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A B S T R A C T   

Acute stress triggers a complex cascade of psychological, physiological, and neural responses, which show large 
and enduring individual differences. Although previous studies have examined the relationship between the 
stress response and dynamic features of the brain’s resting state, no study has used the brain’s dynamic activity in 
the resting state to predict individual differences in the psychosocial stress response. In the current study, resting- 
state scans of forty-eight healthy participants were collected, and then their individual acute stress responses 
during the Montreal Imaging Stress Test (MIST) paradigm were recorded. Results defined a connectivity state 
(CS) characterized by positive correlations across the whole brain during resting-state that could negatively 
predict participants’ feelings of social evaluative threat during stress tasks. Another CS characterized by negative 
correlations between the frontal-parietal network (FPN) and almost all other networks, except the dorsal 
attentional network (DAN), could predict participants’ subjective stress, feelings of uncontrollability, and feel
ings of social evaluative threat. However, no CS could predict participants’ salivary cortisol stress response. 
Overall, these results suggested that the brain state characterized as attentional regulation, linking self-control, 
and top-down regulation ability, could predict the psychosocial stress response. This study also developed an 
objective indicator for predicting human stress responses.   

1. Introduction 

Response to stress involves changes in both the subjective emotional 
experience [1,2] and the objective endocrine system [3]. Recently, with 
the development of modern technology, especially with the application 
of resting-state functional magnetic resonance imaging (rs-fMRI), 
studies have shown that functional connectivity during rs-fMRI signifi
cantly predicts the endocrine stress response [4]. Moreover, this method 
also helps researchers to identify adaptive stress response patterns [5] 
that can help predict stress-related health risks [6] and evaluate the 
effects of treatments on stress disorders [7,8]. Not only do these studies 
help researchers to better understand patterns of the stress response, but 
they also offer useful tools for detecting individual differences in stress. 

Notably, previous studies exploring brain activity during rs-fMRI 
were mostly based on the ‘temporal stationary’ hypothesis, which con
siders the activation and functional connectivity in the resting state to be 
static during the whole scanning process [9-11]. Recent studies have 

found that the brain shows spontaneous activity in the resting state that 
fluctuate with time [12-14]. Therefore, studies have been undertaken to 
capture the brain’s dynamic activity during resting-state [15-17]. These 
approaches showed high sensitivity in detecting inter-individual dif
ferences [18-22]. Researchers also argue that dynamic fluctuations of 
neural activity during resting-state better predict subsequent task per
formance [23]. Moreover, there is evidence indicating that dynamic 
functional connectivity is also closely related to the stress response. A 
previous study used the social evaluation task to induce an acute stress 
response, and they found that participants’ emotional responses during 
the task were associated with the connectivity states comprising the 
ventromedial prefrontal cortex, amygdala, anterior insula, and anterior 
cingulate cortex [24]. Another study found that the brain’s dynamic 
activity changes after acute stress [25]. However, although the brain’s 
dynamic activity during resting-state has a high sensitivity for detecting 
individual differences and predicting task performance, it remains to be 
seen whether inter-individual differences in the characteristics of 
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dynamic activity during rest can predict stress responses. 
Uncontrollability and social evaluation are two key structures that 

consistently induce stress responses, which include negative emotions 
and endocrine responses [26-28]. Notably, the frontal-parietal network 
(FPN) is the core structure for top-down regulation in the brain, which 
regulates attention, cognitive control, and emotion [29,30]. A previous 
study used the dynamic functional connectivity (DFC) approach to 
assess inter-individual differences in a stressful task and found that a 
connectivity state (CS) characterized by positive correlations between 
the FPN and brain can generate a positive emotion network [24], which 
may reflect participants’ top-down controllability over the stress expe
rience. In addition, positive connectivity between the FPN and default 
mode network (DMN) may reflect an individual’s ability to regulate 
negative emotions, which may help people to cope with the incoming 
threats [30]. Moreover, positive correlations between the FPN and 
attentional networks, and sensorimotor networks may reflect an in
dividual’s ability to regulate attention and perception [31,32]. Thus, we 
hypothesized that a CS characterized by positive correlations between 
the FPN, DMN, attentional, and sensorimotor networks will negatively 
predict subsequent stress responses. 

Conversely, researchers found that negative correlations between the 
FPN and sensorimotor networks indicate uncontrollability [33], and 
lower connectivity between the FPN and visual attentional network 
(VAN) indicates attentional deficits [34]. These findings suggest that the 
dysfunction of the FPN may lead to a stronger sense of uncontrollability. 
In addition, the DMN is the most important network during rs-fMRI, 
which has major functions of processing self-referential thought and 
mind wandering [35]. Researchers have suggested that positive corre
lations between the DMN and VAN represent a negative emotional state, 
which may involve negative thoughts about oneself [36]. During stress, 
an individual’s perceived social-evaluative threat and uncontrollability 
lead to an increase in perceived stressfulness [37]. It was found that a 
negative emotional state before the task leads to stronger negative 
emotions during subsequent stress-related tasks [38]. In addition, 
attention deficit also leads to a higher sense of uncontrollability and 
lower sense of self-efficacy during subsequent tasks [39]. Therefore, we 
hypothesized that there will be a CS characterized by a negative corre
lation between the FPN and attentional network and between the 
sensorimotor network and VAN and that the positive correlation be
tween the DMN and VAN will predict the subsequent stress response. 

Here, we aimed to explore whether individual differences in dynamic 
characteristics of the brain during rest could predict the acute stress 
response. Firstly, participants’ spontaneous brain activities during 
resting-state were recorded. Then, the Montreal imaging stress test 
(MIST) was used to induce acute psychological stress [26]. Moreover, we 
also set a video camera during the experiment to induce participants’ 
feelings of social evaluative threat. After stress induction, participants 
were asked to retrospectively complete questionnaires that assessed 
their feelings of social evaluative threat and uncontrollability during the 
stress task. Furthermore, dynamic changes in CS were evaluated based 
on the results of the independent component analysis (ICA), which is 
considered more sensitive to individual differences [15,40,17,41,42]. If 
the derived CS are assumed to be mutually exclusive in time, their oc
currences, and the rate of transitions between them, can be used to 
characterize temporal dynamics [43-45]. Based on previous studies, we 
hypothesized that: (1) a CS characterized by positive connectivity be
tween the FPN and brain would negatively predict participants’ stress 
response; (2) a CS with a negative correlation between the FPN and 
VAN, SMN, and VN and a positive correlation between the VAN and 
DMN would positively predict participants’ stress response. 

2. Materials and methods 

2.1. Participants 

Resting-state scans from 48 healthy participants were collected 

(mean age: 19.10 years, range 17–22, 47.8% female). Exclusion criteria 
consisted of psychological disorders, severe physical illness, head injury, 
and a history of alcoholism or drug abuse. Female participants were 
tested during their luteal phase (around ten days before menstruation) 
and did not use oral contraceptives leading up to the experiment [46, 
47]. All participants were asked not to eat, exercise, drink wine or cof
fee, or brush their teeth for one hour before the experiment was con
ducted. Participants have compensated 50 yuan for attending the 
experiment. All participants provided written informed consent and 
received monetary compensation. This study was approved by the re
view board of the local university. 

2.2. Data acquisition 

2.2.1. Subjective reports 
Participants self-reported subjective stress levels on a 7-point Likert 

scale ranging from 1, corresponding to ‘Not stressful’, to 7, corre
sponding to ‘Terribly stressful’. To test whether the experiment suc
cessfully induced a subjective stress response, self-reported subjective 
stress report was assessed repeatedly for seven times along with salivary 
cortisol collection. Measurement of uncontrollability and social evalu
ative threat (SET) were collected immediately after stress induction, 
wherein participants were asked to evaluate the degree of uncontrolla
bility and the social evaluative threat they had felt during the stress 
induction. Uncontrollability and SET were measured on 7-point Likert 
scales, from 1, corresponding to ‘not at all’, to 7, corresponding to 
‘totally’. 

To exclude the possible effect of either anxiety or depression, we also 
measured anxiety and depression in the participants. Anxiety was 
measured using the 40-item State-Trait Anxiety Inventory (STAI), half of 
which were used to estimate participants’ trait anxiety. Participants 
were asked to rate the anxiety they felt in general on a 4-point Likert 
scale [48], from 1, corresponding to ‘not at all’, to 4 ‘very much so’. 
Participants’ depression was measured by the Beck Depression In
ventory (BDI), which consists of 21 items presented in a multiple-choice 
format that measures the presence and degree of depression in adoles
cents and adults [49]. Each item is evaluated using scores 0–3. Severity 
of depression increases with the score. 

2.2.2. Salivary cortisol data acquisition 
Saliva samples were collected with a sampling device (Salivette, 

SARSTEDT, Germany) to assess cortisol levels throughout the experi
ment. All saliva samples were stored at room temperature until 
completion of the experiment, after which they were stored at − 20 ◦C 
until analysis. Cortisol concentrations were analyzed using an ELISA kit 
(IBL-Hamburg, Germany) following the manufacturer’s instructions. 
The sensitivity of the cortisol assay was 0.005 μg/dl, and the inter- and 
intra-assay coefficients of variation for the cortisol assay were 3.2% and 
6.1%, respectively. 

2.2.3. fMRI data acquisition 
Functional and anatomical whole-brain images were acquired using 

a 3 T Siemens Trio MRI scanner. We acquired 242 vol-functional images 
from each subject with a T2*-weighted gradient echo-planar imaging 
sequence during resting-state. We obtained 32 echo-planar images per 
volume sensitive to blood oxygenation level-dependent contrast (repe
tition time: TR = 2000 msec, echo time: TE = 30 msec, 64 × 64 matrix 
with 3 × 3 × 3 mm3 spatial resolution, FOV = 192 × 192mm2). Slices 
were acquired in an interleaved order and oriented parallel to the AC-PC 
plane with a 0.99 mm gap. High-resolution T1-weighted 3D fast-field 
echo sequences were obtained for anatomical reference (176 slices, 
repetition time: TR = 1900 msec; echo time: TE TE = 2.52 msec; slice 
thickness = 1 mm; FOV = 256 mm × 256 mm; voxel size = 1 mm × 1 
mm × 1 mm). 
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2.3. Experiment procedure 

To mediate the effect of cortisol rhythm on experimental results, 
participants were required to arrive at the laboratory in the mid- 
afternoon between 3:00 and 5:00 pm. After arriving at the laboratory, 
participants were asked to rest for 30 min before entering the MRI 
scanner. A TI image was acquired first, followed by a resting-state 
image. Immediately afterward, the Montreal Imaging Stress Test 
(MIST) paradigm was used to induce a stress response for 30 min. The 
MIST is a well-validated tool to induce psychosocial stress during fMRI 
scanning. In this experiment, participants were asked to answer arith
metic questions with a time limit and visible progress bar, leading to a 
higher rate of incorrect responses. Participants could also see an expert 
on the screen who was monitoring their performance, which induced 
social evaluative threat. After the stress induction was completed, par
ticipants stayed in the scanner and were asked to evaluate the degree of 
uncontrollability and social evaluation threat they experienced during 
stress induction. Then participants were allowed another 25 min to rest 
before leaving the laboratory (Fig. 1). Both the subjective stress and 
salivary cortisol reports were collected inside the scanner with the help 
of another experimenter. 

2.4. fMRI data processing 

2.4.1. Data preprocessing 
fMRI data was processed with MATLAB software using the Gretna 

toolbox [50]. The first 5 frames were removed to allow for signal sta
bilization. Images were then slice–time corrected, realigned, spatially 
normalized to the Montreal Neurological Institute template using dartel 
segments, and smoothed using a 4 mm full-width at half-maximum 
Gaussian kernel. 

2.4.2. Group independent component analysis and component 
identification 

A data-driven group spatial independent component analysis (ICA) 
was performed using Group ICA in the fMRI Toolbox (GIFT) ([51]; 
http://mialab.mrn.org/software/gift/) in the preprocessed rs-fMRI 
data. First, the total independent component (IC) numbers were esti
mated to be 34 by GIFT using the MDL criterion [52]. Then, principal 
components (PCs) were obtained for subject-specific data by principal 
component analysis (PCA). In the group-level data reduction, group data 
formed by the concatenation of participants’ reduced data were further 
decomposed into fewer PCs using PCA. The Infomax ICA algorithm [53] 
was then used to obtain ICs. The reliability of the decomposition was 
evaluated by repeating the algorithm 20 times using ICASSO [53]. For 
each independent component, subject-specific spatial maps and 
time-courses were acquired using the GICA back-reconstruction algo
rithm [54]. Finally, 34 group-level independent components were ac
quired. All ICs were reconfirmed to make sure that selected ICs could 
reflect neuronal activity based on several principles: first, we selected 
ICs whose peak coordinates in the spatial maps were located in the gray 
matter; second, we removed ICs that highly overlapped with known 

vascular, ventricular, motion, and susceptibility artifacts; and finally, we 
selected ICs which were dominated by low-frequency fluctuations [55]. 
To better group ICs into different brain networks, multiple regression 
analyses between all ICs and prior templates [56] were conducted. 
Eventually, 10 ICs were selected and further categorized into eight 
different brain networks: the default mode network (DMN), ventral 
attention network (VAN), dorsal attention network (DAN), left the 
frontal network (LPN), right frontal network (RFN), sensorimotor 
network (SMN), visual network (VN), and auditory network (AN) 
(Fig. 2). The regression results between the 10 ICs and brain networks 
are listed in Table 1. 

2.4.3. Siding window analysis and k-means clustering 
A sliding window approach was used to calculate the DFC with the 

Temporal dynFN toolbox in GIFTv3.0b software (version 3.0b, https://tr 
endscenter.org/software/gift/). Before calculating correlations between 
each component time series, post-processing steps were taken to remove 
remaining noise sources from each time series [57]. These steps included 
nuisance regression of the six realignment parameters and their tem
poral derivatives, linear, quadratic, and cubic detrending, and the 
removal of low-frequency trends (high-frequency cutoff of 0.15 Hz). In 
addition, outlier movement “spikes” were removed. 

We applied a sliding window of 30 TRs (the 60S) with a Gaussian 
alpha value (σ = 3TRs) and a step between windows of 1TR along with 
the 237-TR length scan, yielding a total of 207 overlapping windows for 
each participant [58]. For each window, the 10 × 10 pair-wise covari
ance matrix was calculated using the graphical LASSO framework. To 
assess patterns of functional connectivity that reoccur over time across 
different participants, k-means clustering was applied to the windowed 
covariance matrices from all windows. The optimal number of clusters k 
was chosen based on the elbow criterion of the cluster validity index, 
computed as the ratio of intra-cluster to inter-cluster distance [57]. The 
clustering algorithm was repeated 500 times in Matlab with random 
initializations of cluster centroid positions to obtain a stable solution. In 
addition to using the optimal value for k, the analyses were repeated for 
k ranging from 2 to 8 to assess the robustness of the results regarding 
different values of k. We then derived three indicators to describe dy
namic changes, including (1) number of transitions, which represents 
the overall number of transitions between different states; (2) mean 
dwell time, which was calculated using the average number of consec
utive windows assigned to a state; and (3) the fraction of time, which 
was calculated using the proportion of windows assigned to a state. 

2.5. Linear regression 

All statistical analyses were performed using SPSS (version 22). 
Linear regression was performed to explore the effects of dynamic brain 
activity during resting-state on stress responses, after controlling for age, 
anxiety, and depression. All regressions were conducted separately. The 
brain activity could be characterized by three indicators derived from 
resting-state MRI data (number of transitions, mean dwell time, and 
fraction of time). Stress response was characterized by both subjective 

Fig. 1. An overview of the experiment procedure.  
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(subjective stress reports, uncontrollability, and social evaluative threat) 
and endocrine (salivary cortisol) parameters. In particular, as we 
collected subjective stress reports and salivary cortisol repeatedly, areas 
under the curve with respect to increase (AUCi) were used to estimate 
pronounced changes in response to acute stress (both subjective and 
endocrine). Specifically, the first time points of these data were 
considered as baseline, and the AUCi compared with baseline was 
calculated to reflect the overall level of the stress response [59,60]. 

2.6. Validation analysis 

Previous studies have argued that results derived from the DFC 
approach are susceptible to parameter settings, such as sliding window 
length (WL) and cluster numbers. To date, there is no consensus on the 
optimal length of sliding window size. Some researchers suggest that the 
window size setting should be between 30 and 60 s [61]. A window 
length of 44 s is a commonly used setting in similar studies. Therefore, in 
addition to the window size of 60 s in the main study, we also used a 

window size of 44 s to validate our results. Besides window length, we 
also changed the cluster numbers from k = 5 to k = 4 to exclude the 
influence of parameter settings on the experimental results. 

3. Results 

3.1. Demographic and behavioral data 

Participants’ subjective stress reports and salivary cortisol responses 
are illustrated in Fig. 3. Due to outliers in the cortisol data (more than 3 
standard deviations outside the mean, both female), data from 46 par
ticipants (mean age: 19.11 years, range: 17–22, 47.8% female) were 
included in salivary cortisol statistical analysis [62]. Time period was 
determined to be a significant intra-subject variable in subjective stress 
self-reports, F (6282) = 81.78, p < 0.001, ηp

2 = 0.635. A post-hoc 
analysis revealed that participants reported the highest levels of 
perceived stress after the stress induction (ptime3-time1 < 0.001, ptime4-time1 
< 0.001, ptime5-time1 < 0.001, ptime5-time2 < 0.001, ptime5-time3 < 0.001, 

Fig. 2. Ten independent components (ICs) were selected and categorized into 8 different brain networks. Which are: default mode network (DMN), ventral attention 
network (VAN), dorsal attention network (DAN), left the frontal network (LPN), right frontal network (RFN), sensorimotor network (SMN), visual network (VN), and 
auditory network (AN); different colors represent different ICs in one network; specific IC numbers are listed next to the color bar. 

Table 1 
Regression analyses between prior templates and independent component (ICs).   

DMN DAN VAN LFN RFN SMN VN AN 

IC number  27  19  10  23  29  1  2  11  7  6 
Regression results  0.45  0.41  0.28  0.28  0.46  0.3  0.31  0.55  0.35  0.57 

DMN = default mode network; DAN = dorsal attention network; VAN = ventral attention network; LFN = left the frontal network; RFN = right frontal network; SMN 
= sensorimotor network; VN = visual network (VN); AN = auditory network. 
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ptime5-time6 < 0.001, ptime5-time7 < 0.001). Time period was also found to be 
a significant variable in salivary cortisol levels, F (6270) = 2.615, 
p = 0.018, ηp

2 = 0.55. A post-hoc analysis revealed that participants’ 
salivary cortisol levels peaked after stress induction (ptime5-time1 < 0.05, 
ptime5-time2 < 0.05, ptime5-time3 < 0.05, ptime5-time4 < 0.05, ptime6-time1 <

0.05). The reported increase of subjective stress and salivary cortisol 
indicate that participants’ stress response was successfully induced. To 
describe participants’ overall stress response, the area under the curve 
with respect to these increases was computed and listed in Table 2. 

3.2. K-means clustering results 

The optimal number of clusters k was estimated to be 4 using the 
elbow criterion (Fig. 4), indicating that there were four distinct states 
during the resting-state scan. State 1 accounted for 22% fraction of the 
resting-state scans, which meant that 22% of the windows were 
considered to belong to state 1. State 1 was characterized by positive 
correlations across the whole brain. Specifically, the frontal networks 
(both the left and right) were positively correlated with the DMN (IC 
27), DAN (IC 19), and VAN (IC 10). Furthermore, in state 1, the DAN, 
VAN, LFN (IC 23), and RFN (IC 29) were positively correlated with SMN 

(IC 1 and 2), VN (IC 7 and 11) and AN (IC 6); moreover, the SMN, VN, 
and AN were positively correlated with each other. State 2 (21%) was 
characterized by negative correlations between the frontal networks 
(both the left and right) and the SMN, VN, and AN; the frontal networks 
were also negatively correlated with the VAN but positively correlated 
with DAN, whereas the DMN exhibited an inverse relationship with DAN 
and VAN. Finally, VAN was positively correlated with the SMN, VN, and 
AN. State 3 (13%) showed similar connectivity patterns to state 1; for 
example, they both displayed positive correlations across the whole 
brain. However, there were clear distinctions between states 1 and 3. 
Firstly, the positive correlation in state 3 was much stronger than in state 
1; the DMN in state 3 was positively correlated with all other networks 
except the RFN, and the RFN was negatively correlated with all other 
networks. State 4 (44%) was characterized by positive correlations be
tween the DMN, DAN, VAN, LFN, and RFN and between the SMN, VN, 
and AN. 

3.3. Linear regression analyses of dynamic brain activity and stress 
responses 

The results of the linear regression analysis of dynamic brain activity 

Fig. 3. Subjective stress and salivary cortisol at seven-time points.  

Table 2 
Descriptive data of the stress response.   

Age48 SET48 Uncon48 Depression48 Ttait-anxiety48 SSAUCi48 CortiAUCi46 

Mean  19.1  4.33  5.04  7.69  44.25  75.73  2.86 
SD  1.1  1.43  1.03  5.67  5.27  63.03  9.57 

SSAUCi, CortiAUCi represent the areas under the curve with respect to increase of the seven time-points of subjective stress reports and salivary cortisol, respectively; 
Uncon = uncontrollability; SET = social evaluation threat; SD = standard deviation. Numbers represent the number of participants included in the analyses. 
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on the stress response are shown in Table 3 (uncorrected). One partici
pant’s (male) data were excluded (because its dynamic feathers were 
more than 3 standard deviations outside the mean). For state 1, results 
showed that the mean dwell time of state 1 had a significant effect on 
participants’ social evaluative threat during acute stress, β = − 0.48, SE 
= 0.01, p < 0.001, and the fraction of time of state 1 had the same effect 
on the social evaluative threat measurement, β = − 0.41, SE = 0.91, 
p = 0.003. These data indicate that both longer dwell time and a greater 
fraction of time spent in state 1 could negatively predict participants’ 
social evaluative threat levels during acute stress. For state 2, the mean 
dwell time of state 2 had a significant effect on the subjective stress 
increase during stress, β = 0.32, SE = 0.52, p < 0.05, indicating that 
longer the dwell time of state 2, the stronger the participants’ subjective 
stress. These results also showed that the fraction time of state 2 had a 
significant effect on both participants’ social evaluative threat, β = 0.33, 

SE = 1.02, p < 0.05, and feelings of uncontrollability during acute 
stress, β = 0.34, SE = 0.68, p < 0.001, which indicate that greater the 
fraction of time spent in state 2, more the social evaluative threat and 
uncontrollability participants felt during acute stress (Fig. 5). For state 3 
and state 4, their dynamic features didn’t show significant effects on the 
stress response. 

3.4. Validation analysis 

To exclude the influence of parameter settings on experimental re
sults, we used parameters to test our main results. Similar CSs were 
produced when applying a sliding window length of 44 s or k = 5 
(Fig. 6). Correlation results also showed a similar relationship between 
brain activity during resting-state and individual stress response, except 
for uncontrollability when k = 5. However, the change in sliding 

Fig. 4. Four different states reoccurred during the resting-state scan.  

Table 3 
Linear regression analyses of dynamic brain activity and stress responses.  

Predictors SSAUCi SET Uncon  

B SE t B SE t B SE t 

Age  1.51  8.81 0.17  0.04  0.16 0.22  -0.15  0.13 -1.2 
Trait-anxiety  0.65  1.87 0.35  0.04  0.03 1.26  0.04  0.03 1.54 
Depression  0.47  1.73 0.27  0.07  0.03 2.28*  0.06  0.03 2.4* 
State1_dwell  -0.91  0.66 -1.37  -0.05  0.01 -3.93**  -0.01  0.01 -0.87 
Age  4.06  8.44 0.48  0.14  0.18 0.78  -0.13  0.12 -1.03 
Trait-anxiety  0.9  1.81 0.5  0.04  0.04 1.13  0.04  0.03 1.69 
Depression  1.26  1.7 0.74  0.09  0.04 2.48*  0.07  0.02 2.77* 
State2_dwell  1.18  0.52 2.25*  0.02  0.01 1.97  0.01  0.01 1.74 
Age  1.72  8.69 0.2  0.1  0.19 0.53  -0.15  0.13 -1.21 
Trait-anxiety  0.91  1.86 0.49  0.04  0.04 1.09  0.04  0.03 1.64 
Depression  0.55  1.72 0.32  0.08  0.04 2.11*  0.06  0.02 2.45* 
State3_dwell  0.72  0.44 1.64  0.01  0.01 1.37  0.01  0.01 1.14 
Age  3.67  9.35 0.39  0.09  0.2 0.48  -0.13  0.13 -1 
Trait-anxiety  0.54  1.91 0.28  0.03  0.04 0.86  0.04  0.03 1.48 
Depression  0.57  1.78 0.32  0.08  0.04 2.01*  0.06  0.03 2.4* 
State4_dwell  -0.04  0.23 -0.17  0  0 0.52  0  0 -0.08 
Age  2.65  8.96 0.3  0.06  0.17 0.36  -0.16  0.12 -1.3 
Trait-anxiety  0.55  1.9 0.29  0.04  0.04 1.1  0.04  0.03 1.58 
Depression  0.43  1.78 0.24  0.06  0.03 1.88  0.06  0.02 2.26* 
State1_frac  -23.69  47.79 -0.5  -2.89  0.91 -3.16**  -1.09  0.66 -1.65 
Age  4.72  8.57 0.55  0.16  0.18 0.92  -0.11  0.12 -0.92 
Trait-anxiety  0.7  1.82 0.38  0.04  0.04 1.08  0.04  0.03 1.72 
Depression  1.25  1.73 0.72  0.1  0.04 2.65*  0.07  0.02 3.06** 
State2_frac  96.21  49.13 1.96  2.46  1.02 2.41*  1.74  0.68 2.56** 
Age  2.68  8.88 0.3  0.11  0.18 0.57  -0.14  0.13 -1.11 
Trait-anxiety  0.84  1.93 0.43  0.05  0.04 1.21  0.04  0.03 1.55 
Depression  0.41  1.76 0.23  0.07  0.04 1.96  0.06  0.03 2.36* 
State3_frac  45.9  57.74 0.8  1.76  1.2 1.46  0.36  0.83 0.44 
Age  4.46  8.77 0.51  0.13  0.19 0.69  -0.13  0.13 -1 
Trait-anxiety  0.87  1.88 0.46  0.04  0.04 0.94  0.04  0.03 1.57 
Depression  0.97  1.76 0.55  0.08  0.04 2.09*  0.06  0.03 2.51* 
State4_frac  -46.62  33.47 -1.39  -0.23  0.73 -0.32  -0.34  0.49 -0.7 

SSAUCi = the area under the curve with respect to increase (AUCi) of the seven time-points of subjective stress reports; Uncon = uncontrollability; SET = social 
evaluation threat, SE = standard error, CI = confident interval; 

* p < 0.05; 
** p < 0.01. 
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Fig. 5. Correlations between brains’ dynamic activities and stress responses.  

Fig. 6. Dynamic functional connectivity states derived from different parameters.  
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window length did not affect the main results (Table 4). Overall, 
changing the DFC parameter did not impact the main results. 

4. Discussion 

In the current study, we investigated the relationship between 
spontaneous brain activity during resting-state and the stress response. 
Our results showed that the dynamic changes during resting-state 
significantly predicted individual participants’ subjective stress 
response. Specifically, the mean dwell time of a state characterized by 
positive correlations across the whole brain (state 1) during the resting- 
state negatively predicted participants’ feelings of social evaluative 
threat during the stress task; and the mean dwell time of a state char
acterized by negative correlations between the frontal networks (both 
left and right) and almost all other networks except the DAN (state 2) 
predicted participants’ subjective stress reports during acute stress. 
Finally, the fraction of time of state 2 predicted participants’ feelings of 
social evaluation threat and feelings of uncontrollability during acute 
stress. These dynamic brain states could not, however, predict partici
pants’ salivary cortisol response. 

State 1 was characterized by positive correlations between the FPN 
and other networks. Previous studies suggested that the FPN is related to 
attention allocation, working memory, and cognitive inhibition, which 
enables participants to flexibly adapt information processing to shifting 
situational demands [63]. The connections between the FPN, SMN, and 
VN may reflect the top-down control mechanism that allows the FPN to 
modulate motion and perception [33]. We found that the longer the 
dwell time and greater the fraction of time in this CS effectively pre
dicted a reduction in participants’ feelings of social evaluative threat, 
consistent with our hypothesis that top-down regulation could reduce 
negative emotions. Furthermore, the DMN and FPN were positively 
correlated. Researchers have found that a positive correlation between 
the DMN and FPN during rs-fMRI predicts better performances during 
divergent thinking tasks [64]. This state may reflect participants’ ability 
to regulate attention and emotion toward task demands, rather than 
toward experimenter monitoring and negative feedbacks. In this way, 
we infer that brain state 1 could prevent participants from experiencing 
severe social evaluative threat. Interestingly, state 1 could not predict 
uncontrollability or subjective stress reports during the stress task, 
which may be because the feeling of uncontrollability during acute 
stress was induced by a very difficult task with a short time limit, which 
was beyond participants’ regulation capacity. Moreover, as a component 
of the stress response, feelings of uncontrollability also induced suffi
cient subjective stress responses; therefore, state 1 could not predict 
other stress indicators. 

The mean dwell time of state 2 predicted participants’ subjective 
stress reports and the fraction of this state predicted both participants’ 
feelings of uncontrollability and social evaluative threat. Notably, the 

current results indicated that the mean dwell time of state 2 also 
marginally predicted social evaluative threat (β = 0.28, SE = 0.11, 
p = 0.055) and feelings of uncontrollability (β = 0.24, SE = 0.008, 
p = 0.08). As mentioned above, state 2 was characterized by negative 
correlations between the FPN and the whole brain, except the DMN and 
VAN, whereas the VAN and DMN were positively correlated. This state 
may promote stress due to dysfunctions between the FPN and other 
networks. Interestingly, results also showed that in state 2, the DMN was 
negatively correlated with the DAN, LFN, and RFN, whereas the DAN 
was positively correlated with the LFN/RFN. In the current study, state 2 
was the only state that displayed a strong negative correlation between 
the DMN and FPN. Previous studies have suggested that the three major 
brain networks, including the DMN, FPN, and DAN, interact in a top- 
down manner [65-67]. For example, in the external attention orienta
tion task, the FPN suppressed noise interference from the DMN and 
positively correlated with activity in the DAN [66,68]. This unique 
correlation pattern between the DMN, DAN, and FPN represents an 
external attention orientation state, indicating regulation of 
goal-directed attention [69,70]. Furthermore, other studies have found 
that with the increase in task difficulty, the suppression of the FPN on 
the DMN also increases [71]. These suggest that state 2 is not only an 
external attention orientation state but also a state that occupies a lot of 
cognitive resources. In rs-fMRI, participants were asked to look at the 
cross symbols on the screen, which could be considered as a simple task 
that does not require the FPN to suppress the DMN. The more that state 2 
occurred, the more the effort required by the participant to stay focused. 
This pattern during rs-fMRI may also reflect the dysfunction of attention, 
which leads to a stronger stress response. 

In addition, states 3 and 4 did not predict the stress response. Similar 
connectivity patterns are frequently reported in studies using the dy
namic functional connectivity approach. State 3 was characterized by 
hyperconnectivity across almost all brain networks, except for the RFN. 
Previous large-scale studies have found that children with autism 
display hyperconnectivity across the entire brain [47,72]. Another study 
observed hyperconnectivity in patients exhibiting neurological disrup
tion [73]. Other studies using a dynamic approach identified local 
hyperconnectivity in different mental illnesses [74,75]. Therefore, this 
state is highly capable of distinguishing patients from healthy pop
ulations. State 4 was characterized by weak connections across the 
whole brain, which have been reported in numerous studies. For 
example, one study found that weak connectivity among all intrinsic 
connectivity networks (accounting for 34% of the resting-state scans) 
was positively correlated with thoughts about oneself during the 
resting-state scan [44]. A pathological study found that although the 
weak connectivity overall (accounting for 84% of the resting-state scans) 
could be found both in major depressive disorder (MDD) and healthy 
controls, the MDD group had a longer dwell time in such a state [33]. 
Another pathological study also found that patients with dementia, 
Lewy bodies, or Alzheimer’s disease spent more time than controls in 
this state of sparse connectivity (accounting for 51% of the resting-state 
scans) with an absence of strong positive and negative connections [76]. 
Other studies reported a weak-connection state during the resting state, 
which always seems to account for the highest proportion of 
resting-state scans [77]. We consider that this state may reflect the basal 
reactivity of the resting state. 

Our study revealed that dynamic brain activity during the resting 
state could not predict the participants’ endocrine responses to acute 
stress. This is likely due to the different time scales of different stress 
responses. For example, subjective emotions are rapidly occurring pro
cesses; compared with the emotional response, the endocrine response 
lags behind temporally. The neural responses associated with these 
emotional and endocrine responses also demonstrate different temporal 
dynamics, such as onset time, time to peak, duration, and resurgence 
after disengagement from the stressor [24]. Many different dynamic 
approaches can analyze fMRI data on different time scales. It is possible 
that the dynamic approach we chose here may not fit endocrine data. 

Table 4 
Validation of the relationship between brain activity and stress response.  

Parameter 　 r p 95% CI 

WL = 60 k = 5 State1_dwell & SET -0.47***  0.001 [ - 0.65, - 0.29] 
State1_frac &SET -0.43**  0.003 [ - 0.63, - 0.22] 
State3_dwell & SSAUCi 0.32*  0.035 [ 0.08, 0.52] 
State3_dwell & SET 0.2  0.2 [ - 0.05, 0.42] 
State3_frac & Uncon 0.27  0.074 [ − 0.05, 0.49] 

WL = 44 k = 4 State4_dwell & SET -0.56***  0.000 [ - 0.70, - 0.40] 
State4_frac &SET -0.5***  0.001 [ − 0.69, - 0.26] 
State2_dwell & SSAUCi 0.312*  0.037 [ 0.01, 0.51] 
State2_frac & SET 0.29  0.056 [ − 0.02, 0.53] 
State2_frac & Uncon 0.28  0.063 [ - 0.10, 0.55] 

SSAUCi = the area under the curve with respect to the increase (AUCi) in the 
seven time-points of subjective stress reports; Uncon = uncontrollability; SET 
= social evaluation threat, SE = standard error, CI = confident interval，WL 
= window length. 
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Future studies may be required to match fMRI data with the endocrine 
response on various time scales to find the best indicator to predict the 
endocrine stress response. 

Taken together, the results of the current study suggest that brain 
states in the resting state are characterized as attentional deficits and 
negative mood, and brain states linking self-control and top-down 
regulation, may predict the severity of an individual’s subjective stress 
response. To our knowledge, this is the first evidence of individual dif
ferences of dynamic brain activity in the resting state predicting the 
subsequent stress response. However, there were some limitations in the 
methodology that must also be taken into consideration. First, although 
dynamic connectivity measures are sensitive to changes in other features 
of the data, such as variance and signal-to-noise ratio of the fMRI time 
series and non-stationarity in mean and variance, these confounders 
may still skew the explanation of the results. Second, the results did not 
survive Bonferroni correction, which limits the generalizability of these 
results. Lastly, as the gold standard of the stress response, future studies 
are needed to explore a reliable way to predict the endocrine stress 
response, such as a systematic parameter setting for salivary cortisol 
data, window length, and cluster number. 

5. Conclusion 

Compared to traditional fMRI analysis methods, the dynamic 
approach we employed in this study classified resting-state scans into 
distinct states and calculated the dynamic changes in brain activity 
between these states. Our results suggested that brain states character
ized as attentional deficits and negative mood, and brain states linking 
self-control and top-down regulation, could predict subjective stress 
responses in different individuals. These findings provide the first evi
dence that individual differences in dynamic brain activity in the resting 
state can predict subsequent stress responses, and provides an objective 
indicator for detecting an individual’s stress response. 
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